uawdijnntqw1x1x1
IP : 216.73.216.52
Hostname : server86.web-hosting.com
Kernel : Linux server86.web-hosting.com 4.18.0-513.18.1.lve.el8.x86_64 #1 SMP Thu Feb 22 12:55:50 UTC 2024 x86_64
Disable Function : None :)
OS : Linux
PATH:
/
home
/
servlmvm
/
..
/
.
/
..
/
.
/
opt
/
hc_python
/
lib64
/
python3.12
/
site-packages
/
sqlalchemy
/
sql
/
sqltypes.py
/
/
# sql/sqltypes.py # Copyright (C) 2005-2025 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: https://www.opensource.org/licenses/mit-license.php # mypy: allow-untyped-defs, allow-untyped-calls """SQL specific types. """ from __future__ import annotations import collections.abc as collections_abc import datetime as dt import decimal import enum import json import pickle from typing import Any from typing import Callable from typing import cast from typing import Dict from typing import List from typing import Optional from typing import overload from typing import Sequence from typing import Tuple from typing import Type from typing import TYPE_CHECKING from typing import TypeVar from typing import Union from uuid import UUID as _python_UUID from . import coercions from . import elements from . import operators from . import roles from . import type_api from .base import _NONE_NAME from .base import NO_ARG from .base import SchemaEventTarget from .cache_key import HasCacheKey from .elements import quoted_name from .elements import Slice from .elements import TypeCoerce as type_coerce # noqa from .type_api import Emulated from .type_api import NativeForEmulated # noqa from .type_api import to_instance as to_instance from .type_api import TypeDecorator as TypeDecorator from .type_api import TypeEngine as TypeEngine from .type_api import TypeEngineMixin from .type_api import Variant # noqa from .visitors import InternalTraversal from .. import event from .. import exc from .. import inspection from .. import util from ..engine import processors from ..util import langhelpers from ..util import OrderedDict from ..util import warn_deprecated from ..util.typing import get_args from ..util.typing import is_literal from ..util.typing import is_pep695 from ..util.typing import Literal if TYPE_CHECKING: from ._typing import _ColumnExpressionArgument from ._typing import _TypeEngineArgument from .operators import OperatorType from .schema import MetaData from .type_api import _BindProcessorType from .type_api import _ComparatorFactory from .type_api import _LiteralProcessorType from .type_api import _MatchedOnType from .type_api import _ResultProcessorType from ..engine.interfaces import Dialect _T = TypeVar("_T", bound="Any") _CT = TypeVar("_CT", bound=Any) _TE = TypeVar("_TE", bound="TypeEngine[Any]") class HasExpressionLookup(TypeEngineMixin): """Mixin expression adaptations based on lookup tables. These rules are currently used by the numeric, integer and date types which have detailed cross-expression coercion rules. """ @property def _expression_adaptations(self): raise NotImplementedError() class Comparator(TypeEngine.Comparator[_CT]): __slots__ = () _blank_dict = util.EMPTY_DICT def _adapt_expression( self, op: OperatorType, other_comparator: TypeEngine.Comparator[Any], ) -> Tuple[OperatorType, TypeEngine[Any]]: othertype = other_comparator.type._type_affinity if TYPE_CHECKING: assert isinstance(self.type, HasExpressionLookup) lookup = self.type._expression_adaptations.get( op, self._blank_dict ).get(othertype, self.type) if lookup is othertype: return (op, other_comparator.type) elif lookup is self.type._type_affinity: return (op, self.type) else: return (op, to_instance(lookup)) comparator_factory: _ComparatorFactory[Any] = Comparator class Concatenable(TypeEngineMixin): """A mixin that marks a type as supporting 'concatenation', typically strings.""" class Comparator(TypeEngine.Comparator[_T]): __slots__ = () def _adapt_expression( self, op: OperatorType, other_comparator: TypeEngine.Comparator[Any], ) -> Tuple[OperatorType, TypeEngine[Any]]: if op is operators.add and isinstance( other_comparator, (Concatenable.Comparator, NullType.Comparator), ): return operators.concat_op, self.expr.type else: return super()._adapt_expression(op, other_comparator) comparator_factory: _ComparatorFactory[Any] = Comparator class Indexable(TypeEngineMixin): """A mixin that marks a type as supporting indexing operations, such as array or JSON structures. """ class Comparator(TypeEngine.Comparator[_T]): __slots__ = () def _setup_getitem(self, index): raise NotImplementedError() def __getitem__(self, index): ( adjusted_op, adjusted_right_expr, result_type, ) = self._setup_getitem(index) return self.operate( adjusted_op, adjusted_right_expr, result_type=result_type ) comparator_factory: _ComparatorFactory[Any] = Comparator class String(Concatenable, TypeEngine[str]): """The base for all string and character types. In SQL, corresponds to VARCHAR. The `length` field is usually required when the `String` type is used within a CREATE TABLE statement, as VARCHAR requires a length on most databases. """ __visit_name__ = "string" def __init__( self, length: Optional[int] = None, collation: Optional[str] = None, ): """ Create a string-holding type. :param length: optional, a length for the column for use in DDL and CAST expressions. May be safely omitted if no ``CREATE TABLE`` will be issued. Certain databases may require a ``length`` for use in DDL, and will raise an exception when the ``CREATE TABLE`` DDL is issued if a ``VARCHAR`` with no length is included. Whether the value is interpreted as bytes or characters is database specific. :param collation: Optional, a column-level collation for use in DDL and CAST expressions. Renders using the COLLATE keyword supported by SQLite, MySQL, and PostgreSQL. E.g.: .. sourcecode:: pycon+sql >>> from sqlalchemy import cast, select, String >>> print(select(cast("some string", String(collation="utf8")))) {printsql}SELECT CAST(:param_1 AS VARCHAR COLLATE utf8) AS anon_1 .. note:: In most cases, the :class:`.Unicode` or :class:`.UnicodeText` datatypes should be used for a :class:`_schema.Column` that expects to store non-ascii data. These datatypes will ensure that the correct types are used on the database. """ self.length = length self.collation = collation def _with_collation(self, collation): new_type = self.copy() new_type.collation = collation return new_type def _resolve_for_literal(self, value): # I was SO PROUD of my regex trick, but we dont need it. # re.search(r"[^\u0000-\u007F]", value) if value.isascii(): return _STRING else: return _UNICODE def literal_processor(self, dialect): def process(value): value = value.replace("'", "''") if dialect.identifier_preparer._double_percents: value = value.replace("%", "%%") return "'%s'" % value return process def bind_processor(self, dialect): return None def result_processor(self, dialect, coltype): return None @property def python_type(self): return str def get_dbapi_type(self, dbapi): return dbapi.STRING class Text(String): """A variably sized string type. In SQL, usually corresponds to CLOB or TEXT. In general, TEXT objects do not have a length; while some databases will accept a length argument here, it will be rejected by others. """ __visit_name__ = "text" class Unicode(String): """A variable length Unicode string type. The :class:`.Unicode` type is a :class:`.String` subclass that assumes input and output strings that may contain non-ASCII characters, and for some backends implies an underlying column type that is explicitly supporting of non-ASCII data, such as ``NVARCHAR`` on Oracle Database and SQL Server. This will impact the output of ``CREATE TABLE`` statements and ``CAST`` functions at the dialect level. The character encoding used by the :class:`.Unicode` type that is used to transmit and receive data to the database is usually determined by the DBAPI itself. All modern DBAPIs accommodate non-ASCII strings but may have different methods of managing database encodings; if necessary, this encoding should be configured as detailed in the notes for the target DBAPI in the :ref:`dialect_toplevel` section. In modern SQLAlchemy, use of the :class:`.Unicode` datatype does not imply any encoding/decoding behavior within SQLAlchemy itself. In Python 3, all string objects are inherently Unicode capable, and SQLAlchemy does not produce bytestring objects nor does it accommodate a DBAPI that does not return Python Unicode objects in result sets for string values. .. warning:: Some database backends, particularly SQL Server with pyodbc, are known to have undesirable behaviors regarding data that is noted as being of ``NVARCHAR`` type as opposed to ``VARCHAR``, including datatype mismatch errors and non-use of indexes. See the section on :meth:`.DialectEvents.do_setinputsizes` for background on working around unicode character issues for backends like SQL Server with pyodbc as well as cx_Oracle. .. seealso:: :class:`.UnicodeText` - unlengthed textual counterpart to :class:`.Unicode`. :meth:`.DialectEvents.do_setinputsizes` """ __visit_name__ = "unicode" class UnicodeText(Text): """An unbounded-length Unicode string type. See :class:`.Unicode` for details on the unicode behavior of this object. Like :class:`.Unicode`, usage the :class:`.UnicodeText` type implies a unicode-capable type being used on the backend, such as ``NCLOB``, ``NTEXT``. """ __visit_name__ = "unicode_text" class Integer(HasExpressionLookup, TypeEngine[int]): """A type for ``int`` integers.""" __visit_name__ = "integer" if TYPE_CHECKING: @util.ro_memoized_property def _type_affinity(self) -> Type[Integer]: ... def get_dbapi_type(self, dbapi): return dbapi.NUMBER @property def python_type(self): return int def _resolve_for_literal(self, value): if value.bit_length() >= 32: return _BIGINTEGER else: return self def literal_processor(self, dialect): def process(value): return str(int(value)) return process @util.memoized_property def _expression_adaptations(self): return { operators.add: { Date: Date, Integer: self.__class__, Numeric: Numeric, }, operators.mul: { Interval: Interval, Integer: self.__class__, Numeric: Numeric, }, operators.truediv: {Integer: Numeric, Numeric: Numeric}, operators.floordiv: {Integer: self.__class__, Numeric: Numeric}, operators.sub: {Integer: self.__class__, Numeric: Numeric}, } class SmallInteger(Integer): """A type for smaller ``int`` integers. Typically generates a ``SMALLINT`` in DDL, and otherwise acts like a normal :class:`.Integer` on the Python side. """ __visit_name__ = "small_integer" class BigInteger(Integer): """A type for bigger ``int`` integers. Typically generates a ``BIGINT`` in DDL, and otherwise acts like a normal :class:`.Integer` on the Python side. """ __visit_name__ = "big_integer" _N = TypeVar("_N", bound=Union[decimal.Decimal, float]) class Numeric(HasExpressionLookup, TypeEngine[_N]): """Base for non-integer numeric types, such as ``NUMERIC``, ``FLOAT``, ``DECIMAL``, and other variants. The :class:`.Numeric` datatype when used directly will render DDL corresponding to precision numerics if available, such as ``NUMERIC(precision, scale)``. The :class:`.Float` subclass will attempt to render a floating-point datatype such as ``FLOAT(precision)``. :class:`.Numeric` returns Python ``decimal.Decimal`` objects by default, based on the default value of ``True`` for the :paramref:`.Numeric.asdecimal` parameter. If this parameter is set to False, returned values are coerced to Python ``float`` objects. The :class:`.Float` subtype, being more specific to floating point, defaults the :paramref:`.Float.asdecimal` flag to False so that the default Python datatype is ``float``. .. note:: When using a :class:`.Numeric` datatype against a database type that returns Python floating point values to the driver, the accuracy of the decimal conversion indicated by :paramref:`.Numeric.asdecimal` may be limited. The behavior of specific numeric/floating point datatypes is a product of the SQL datatype in use, the Python :term:`DBAPI` in use, as well as strategies that may be present within the SQLAlchemy dialect in use. Users requiring specific precision/ scale are encouraged to experiment with the available datatypes in order to determine the best results. """ __visit_name__ = "numeric" if TYPE_CHECKING: @util.ro_memoized_property def _type_affinity(self) -> Type[Numeric[_N]]: ... _default_decimal_return_scale = 10 @overload def __init__( self: Numeric[decimal.Decimal], precision: Optional[int] = ..., scale: Optional[int] = ..., decimal_return_scale: Optional[int] = ..., asdecimal: Literal[True] = ..., ): ... @overload def __init__( self: Numeric[float], precision: Optional[int] = ..., scale: Optional[int] = ..., decimal_return_scale: Optional[int] = ..., asdecimal: Literal[False] = ..., ): ... def __init__( self, precision: Optional[int] = None, scale: Optional[int] = None, decimal_return_scale: Optional[int] = None, asdecimal: bool = True, ): """ Construct a Numeric. :param precision: the numeric precision for use in DDL ``CREATE TABLE``. :param scale: the numeric scale for use in DDL ``CREATE TABLE``. :param asdecimal: default True. Return whether or not values should be sent as Python Decimal objects, or as floats. Different DBAPIs send one or the other based on datatypes - the Numeric type will ensure that return values are one or the other across DBAPIs consistently. :param decimal_return_scale: Default scale to use when converting from floats to Python decimals. Floating point values will typically be much longer due to decimal inaccuracy, and most floating point database types don't have a notion of "scale", so by default the float type looks for the first ten decimal places when converting. Specifying this value will override that length. Types which do include an explicit ".scale" value, such as the base :class:`.Numeric` as well as the MySQL float types, will use the value of ".scale" as the default for decimal_return_scale, if not otherwise specified. When using the ``Numeric`` type, care should be taken to ensure that the asdecimal setting is appropriate for the DBAPI in use - when Numeric applies a conversion from Decimal->float or float-> Decimal, this conversion incurs an additional performance overhead for all result columns received. DBAPIs that return Decimal natively (e.g. psycopg2) will have better accuracy and higher performance with a setting of ``True``, as the native translation to Decimal reduces the amount of floating- point issues at play, and the Numeric type itself doesn't need to apply any further conversions. However, another DBAPI which returns floats natively *will* incur an additional conversion overhead, and is still subject to floating point data loss - in which case ``asdecimal=False`` will at least remove the extra conversion overhead. """ self.precision = precision self.scale = scale self.decimal_return_scale = decimal_return_scale self.asdecimal = asdecimal @property def _effective_decimal_return_scale(self): if self.decimal_return_scale is not None: return self.decimal_return_scale elif getattr(self, "scale", None) is not None: return self.scale else: return self._default_decimal_return_scale def get_dbapi_type(self, dbapi): return dbapi.NUMBER def literal_processor(self, dialect): def process(value): return str(value) return process @property def python_type(self): if self.asdecimal: return decimal.Decimal else: return float def bind_processor(self, dialect): if dialect.supports_native_decimal: return None else: return processors.to_float def result_processor(self, dialect, coltype): if self.asdecimal: if dialect.supports_native_decimal: # we're a "numeric", DBAPI will give us Decimal directly return None else: # we're a "numeric", DBAPI returns floats, convert. return processors.to_decimal_processor_factory( decimal.Decimal, ( self.scale if self.scale is not None else self._default_decimal_return_scale ), ) else: if dialect.supports_native_decimal: return processors.to_float else: return None @util.memoized_property def _expression_adaptations(self): return { operators.mul: { Interval: Interval, Numeric: self.__class__, Integer: self.__class__, }, operators.truediv: { Numeric: self.__class__, Integer: self.__class__, }, operators.add: {Numeric: self.__class__, Integer: self.__class__}, operators.sub: {Numeric: self.__class__, Integer: self.__class__}, } class Float(Numeric[_N]): """Type representing floating point types, such as ``FLOAT`` or ``REAL``. This type returns Python ``float`` objects by default, unless the :paramref:`.Float.asdecimal` flag is set to ``True``, in which case they are coerced to ``decimal.Decimal`` objects. When a :paramref:`.Float.precision` is not provided in a :class:`_types.Float` type some backend may compile this type as an 8 bytes / 64 bit float datatype. To use a 4 bytes / 32 bit float datatype a precision <= 24 can usually be provided or the :class:`_types.REAL` type can be used. This is known to be the case in the PostgreSQL and MSSQL dialects that render the type as ``FLOAT`` that's in both an alias of ``DOUBLE PRECISION``. Other third party dialects may have similar behavior. """ __visit_name__ = "float" scale = None @overload def __init__( self: Float[float], precision: Optional[int] = ..., asdecimal: Literal[False] = ..., decimal_return_scale: Optional[int] = ..., ): ... @overload def __init__( self: Float[decimal.Decimal], precision: Optional[int] = ..., asdecimal: Literal[True] = ..., decimal_return_scale: Optional[int] = ..., ): ... def __init__( self: Float[_N], precision: Optional[int] = None, asdecimal: bool = False, decimal_return_scale: Optional[int] = None, ): r""" Construct a Float. :param precision: the numeric precision for use in DDL ``CREATE TABLE``. Backends **should** attempt to ensure this precision indicates a number of digits for the generic :class:`_sqltypes.Float` datatype. .. note:: For the Oracle Database backend, the :paramref:`_sqltypes.Float.precision` parameter is not accepted when rendering DDL, as Oracle Database does not support float precision specified as a number of decimal places. Instead, use the Oracle Database-specific :class:`_oracle.FLOAT` datatype and specify the :paramref:`_oracle.FLOAT.binary_precision` parameter. This is new in version 2.0 of SQLAlchemy. To create a database agnostic :class:`_types.Float` that separately specifies binary precision for Oracle Database, use :meth:`_types.TypeEngine.with_variant` as follows:: from sqlalchemy import Column from sqlalchemy import Float from sqlalchemy.dialects import oracle Column( "float_data", Float(5).with_variant(oracle.FLOAT(binary_precision=16), "oracle"), ) :param asdecimal: the same flag as that of :class:`.Numeric`, but defaults to ``False``. Note that setting this flag to ``True`` results in floating point conversion. :param decimal_return_scale: Default scale to use when converting from floats to Python decimals. Floating point values will typically be much longer due to decimal inaccuracy, and most floating point database types don't have a notion of "scale", so by default the float type looks for the first ten decimal places when converting. Specifying this value will override that length. Note that the MySQL float types, which do include "scale", will use "scale" as the default for decimal_return_scale, if not otherwise specified. """ # noqa: E501 self.precision = precision self.asdecimal = asdecimal self.decimal_return_scale = decimal_return_scale def result_processor(self, dialect, coltype): if self.asdecimal: return processors.to_decimal_processor_factory( decimal.Decimal, self._effective_decimal_return_scale ) elif dialect.supports_native_decimal: return processors.to_float else: return None class Double(Float[_N]): """A type for double ``FLOAT`` floating point types. Typically generates a ``DOUBLE`` or ``DOUBLE_PRECISION`` in DDL, and otherwise acts like a normal :class:`.Float` on the Python side. .. versionadded:: 2.0 """ __visit_name__ = "double" class _RenderISO8601NoT: def _literal_processor_datetime(self, dialect): return self._literal_processor_portion(dialect, None) def _literal_processor_date(self, dialect): return self._literal_processor_portion(dialect, 0) def _literal_processor_time(self, dialect): return self._literal_processor_portion(dialect, -1) def _literal_processor_portion(self, dialect, _portion=None): assert _portion in (None, 0, -1) if _portion is not None: def process(value): return f"""'{value.isoformat().split("T")[_portion]}'""" else: def process(value): return f"""'{value.isoformat().replace("T", " ")}'""" return process class DateTime( _RenderISO8601NoT, HasExpressionLookup, TypeEngine[dt.datetime] ): """A type for ``datetime.datetime()`` objects. Date and time types return objects from the Python ``datetime`` module. Most DBAPIs have built in support for the datetime module, with the noted exception of SQLite. In the case of SQLite, date and time types are stored as strings which are then converted back to datetime objects when rows are returned. For the time representation within the datetime type, some backends include additional options, such as timezone support and fractional seconds support. For fractional seconds, use the dialect-specific datatype, such as :class:`.mysql.TIME`. For timezone support, use at least the :class:`_types.TIMESTAMP` datatype, if not the dialect-specific datatype object. """ __visit_name__ = "datetime" def __init__(self, timezone: bool = False): """Construct a new :class:`.DateTime`. :param timezone: boolean. Indicates that the datetime type should enable timezone support, if available on the **base date/time-holding type only**. It is recommended to make use of the :class:`_types.TIMESTAMP` datatype directly when using this flag, as some databases include separate generic date/time-holding types distinct from the timezone-capable TIMESTAMP datatype, such as Oracle Database. """ self.timezone = timezone def get_dbapi_type(self, dbapi): return dbapi.DATETIME def _resolve_for_literal(self, value): with_timezone = value.tzinfo is not None if with_timezone and not self.timezone: return DATETIME_TIMEZONE else: return self def literal_processor(self, dialect): return self._literal_processor_datetime(dialect) @property def python_type(self): return dt.datetime @util.memoized_property def _expression_adaptations(self): # Based on # https://www.postgresql.org/docs/current/static/functions-datetime.html. return { operators.add: {Interval: self.__class__}, operators.sub: {Interval: self.__class__, DateTime: Interval}, } class Date(_RenderISO8601NoT, HasExpressionLookup, TypeEngine[dt.date]): """A type for ``datetime.date()`` objects.""" __visit_name__ = "date" def get_dbapi_type(self, dbapi): return dbapi.DATETIME @property def python_type(self): return dt.date def literal_processor(self, dialect): return self._literal_processor_date(dialect) @util.memoized_property def _expression_adaptations(self): # Based on # https://www.postgresql.org/docs/current/static/functions-datetime.html. return { operators.add: { Integer: self.__class__, Interval: DateTime, Time: DateTime, }, operators.sub: { # date - integer = date Integer: self.__class__, # date - date = integer. Date: Integer, Interval: DateTime, # date - datetime = interval, # this one is not in the PG docs # but works DateTime: Interval, }, } class Time(_RenderISO8601NoT, HasExpressionLookup, TypeEngine[dt.time]): """A type for ``datetime.time()`` objects.""" __visit_name__ = "time" def __init__(self, timezone: bool = False): self.timezone = timezone def get_dbapi_type(self, dbapi): return dbapi.DATETIME @property def python_type(self): return dt.time def _resolve_for_literal(self, value): with_timezone = value.tzinfo is not None if with_timezone and not self.timezone: return TIME_TIMEZONE else: return self @util.memoized_property def _expression_adaptations(self): # Based on # https://www.postgresql.org/docs/current/static/functions-datetime.html. return { operators.add: {Date: DateTime, Interval: self.__class__}, operators.sub: {Time: Interval, Interval: self.__class__}, } def literal_processor(self, dialect): return self._literal_processor_time(dialect) class _Binary(TypeEngine[bytes]): """Define base behavior for binary types.""" def __init__(self, length: Optional[int] = None): self.length = length @util.ro_memoized_property def _generic_type_affinity( self, ) -> Type[TypeEngine[bytes]]: return LargeBinary def literal_processor(self, dialect): def process(value): # TODO: this is useless for real world scenarios; implement # real binary literals value = value.decode( dialect._legacy_binary_type_literal_encoding ).replace("'", "''") return "'%s'" % value return process @property def python_type(self): return bytes # Python 3 - sqlite3 doesn't need the `Binary` conversion # here, though pg8000 does to indicate "bytea" def bind_processor(self, dialect): if dialect.dbapi is None: return None DBAPIBinary = dialect.dbapi.Binary def process(value): if value is not None: return DBAPIBinary(value) else: return None return process # Python 3 has native bytes() type # both sqlite3 and pg8000 seem to return it, # psycopg2 as of 2.5 returns 'memoryview' def result_processor(self, dialect, coltype): if dialect.returns_native_bytes: return None def process(value): if value is not None: value = bytes(value) return value return process def coerce_compared_value(self, op, value): """See :meth:`.TypeEngine.coerce_compared_value` for a description.""" if isinstance(value, str): return self else: return super().coerce_compared_value(op, value) def get_dbapi_type(self, dbapi): return dbapi.BINARY class LargeBinary(_Binary): """A type for large binary byte data. The :class:`.LargeBinary` type corresponds to a large and/or unlengthed binary type for the target platform, such as BLOB on MySQL and BYTEA for PostgreSQL. It also handles the necessary conversions for the DBAPI. """ __visit_name__ = "large_binary" def __init__(self, length: Optional[int] = None): """ Construct a LargeBinary type. :param length: optional, a length for the column for use in DDL statements, for those binary types that accept a length, such as the MySQL BLOB type. """ _Binary.__init__(self, length=length) class SchemaType(SchemaEventTarget, TypeEngineMixin): """Add capabilities to a type which allow for schema-level DDL to be associated with a type. Supports types that must be explicitly created/dropped (i.e. PG ENUM type) as well as types that are complimented by table or schema level constraints, triggers, and other rules. :class:`.SchemaType` classes can also be targets for the :meth:`.DDLEvents.before_parent_attach` and :meth:`.DDLEvents.after_parent_attach` events, where the events fire off surrounding the association of the type object with a parent :class:`_schema.Column`. .. seealso:: :class:`.Enum` :class:`.Boolean` """ _use_schema_map = True name: Optional[str] def __init__( self, name: Optional[str] = None, schema: Optional[str] = None, metadata: Optional[MetaData] = None, inherit_schema: bool = False, quote: Optional[bool] = None, _create_events: bool = True, _adapted_from: Optional[SchemaType] = None, ): if name is not None: self.name = quoted_name(name, quote) else: self.name = None self.schema = schema self.metadata = metadata self.inherit_schema = inherit_schema self._create_events = _create_events if _create_events and self.metadata: event.listen( self.metadata, "before_create", util.portable_instancemethod(self._on_metadata_create), ) event.listen( self.metadata, "after_drop", util.portable_instancemethod(self._on_metadata_drop), ) if _adapted_from: self.dispatch = self.dispatch._join(_adapted_from.dispatch) def _set_parent(self, parent, **kw): # set parent hook is when this type is associated with a column. # Column calls it for all SchemaEventTarget instances, either the # base type and/or variants in _variant_mapping. # we want to register a second hook to trigger when that column is # associated with a table. in that event, we and all of our variants # may want to set up some state on the table such as a CheckConstraint # that will conditionally render at DDL render time. # the base SchemaType also sets up events for # on_table/metadata_create/drop in this method, which is used by # "native" types with a separate CREATE/DROP e.g. Postgresql.ENUM parent._on_table_attach(util.portable_instancemethod(self._set_table)) def _variant_mapping_for_set_table(self, column): if column.type._variant_mapping: variant_mapping = dict(column.type._variant_mapping) variant_mapping["_default"] = column.type else: variant_mapping = None return variant_mapping def _set_table(self, column, table): if self.inherit_schema: self.schema = table.schema elif self.metadata and self.schema is None and self.metadata.schema: self.schema = self.metadata.schema if not self._create_events: return variant_mapping = self._variant_mapping_for_set_table(column) event.listen( table, "before_create", util.portable_instancemethod( self._on_table_create, {"variant_mapping": variant_mapping} ), ) event.listen( table, "after_drop", util.portable_instancemethod( self._on_table_drop, {"variant_mapping": variant_mapping} ), ) if self.metadata is None: # if SchemaType were created w/ a metadata argument, these # events would already have been associated with that metadata # and would preclude an association with table.metadata event.listen( table.metadata, "before_create", util.portable_instancemethod( self._on_metadata_create, {"variant_mapping": variant_mapping}, ), ) event.listen( table.metadata, "after_drop", util.portable_instancemethod( self._on_metadata_drop, {"variant_mapping": variant_mapping}, ), ) def copy(self, **kw): return self.adapt( cast("Type[TypeEngine[Any]]", self.__class__), _create_events=True, metadata=( kw.get("_to_metadata", self.metadata) if self.metadata is not None else None ), ) @overload def adapt(self, cls: Type[_TE], **kw: Any) -> _TE: ... @overload def adapt( self, cls: Type[TypeEngineMixin], **kw: Any ) -> TypeEngine[Any]: ... def adapt( self, cls: Type[Union[TypeEngine[Any], TypeEngineMixin]], **kw: Any ) -> TypeEngine[Any]: kw.setdefault("_create_events", False) kw.setdefault("_adapted_from", self) return super().adapt(cls, **kw) def create(self, bind, checkfirst=False): """Issue CREATE DDL for this type, if applicable.""" t = self.dialect_impl(bind.dialect) if isinstance(t, SchemaType) and t.__class__ is not self.__class__: t.create(bind, checkfirst=checkfirst) def drop(self, bind, checkfirst=False): """Issue DROP DDL for this type, if applicable.""" t = self.dialect_impl(bind.dialect) if isinstance(t, SchemaType) and t.__class__ is not self.__class__: t.drop(bind, checkfirst=checkfirst) def _on_table_create(self, target, bind, **kw): if not self._is_impl_for_variant(bind.dialect, kw): return t = self.dialect_impl(bind.dialect) if isinstance(t, SchemaType) and t.__class__ is not self.__class__: t._on_table_create(target, bind, **kw) def _on_table_drop(self, target, bind, **kw): if not self._is_impl_for_variant(bind.dialect, kw): return t = self.dialect_impl(bind.dialect) if isinstance(t, SchemaType) and t.__class__ is not self.__class__: t._on_table_drop(target, bind, **kw) def _on_metadata_create(self, target, bind, **kw): if not self._is_impl_for_variant(bind.dialect, kw): return t = self.dialect_impl(bind.dialect) if isinstance(t, SchemaType) and t.__class__ is not self.__class__: t._on_metadata_create(target, bind, **kw) def _on_metadata_drop(self, target, bind, **kw): if not self._is_impl_for_variant(bind.dialect, kw): return t = self.dialect_impl(bind.dialect) if isinstance(t, SchemaType) and t.__class__ is not self.__class__: t._on_metadata_drop(target, bind, **kw) def _is_impl_for_variant(self, dialect, kw): variant_mapping = kw.pop("variant_mapping", None) if not variant_mapping: return True # for types that have _variant_mapping, all the impls in the map # that are SchemaEventTarget subclasses get set up as event holders. # this is so that constructs that need # to be associated with the Table at dialect-agnostic time etc. like # CheckConstraints can be set up with that table. they then add # to these constraints a DDL check_rule that among other things # will check this _is_impl_for_variant() method to determine when # the dialect is known that we are part of the table's DDL sequence. # since PostgreSQL is the only DB that has ARRAY this can only # be integration tested by PG-specific tests def _we_are_the_impl(typ): return ( typ is self or isinstance(typ, ARRAY) and typ.item_type is self # type: ignore[comparison-overlap] ) if dialect.name in variant_mapping and _we_are_the_impl( variant_mapping[dialect.name] ): return True elif dialect.name not in variant_mapping: return _we_are_the_impl(variant_mapping["_default"]) class Enum(String, SchemaType, Emulated, TypeEngine[Union[str, enum.Enum]]): """Generic Enum Type. The :class:`.Enum` type provides a set of possible string values which the column is constrained towards. The :class:`.Enum` type will make use of the backend's native "ENUM" type if one is available; otherwise, it uses a VARCHAR datatype. An option also exists to automatically produce a CHECK constraint when the VARCHAR (so called "non-native") variant is produced; see the :paramref:`.Enum.create_constraint` flag. The :class:`.Enum` type also provides in-Python validation of string values during both read and write operations. When reading a value from the database in a result set, the string value is always checked against the list of possible values and a ``LookupError`` is raised if no match is found. When passing a value to the database as a plain string within a SQL statement, if the :paramref:`.Enum.validate_strings` parameter is set to True, a ``LookupError`` is raised for any string value that's not located in the given list of possible values; note that this impacts usage of LIKE expressions with enumerated values (an unusual use case). The source of enumerated values may be a list of string values, or alternatively a PEP-435-compliant enumerated class. For the purposes of the :class:`.Enum` datatype, this class need only provide a ``__members__`` method. When using an enumerated class, the enumerated objects are used both for input and output, rather than strings as is the case with a plain-string enumerated type:: import enum from sqlalchemy import Enum class MyEnum(enum.Enum): one = 1 two = 2 three = 3 t = Table("data", MetaData(), Column("value", Enum(MyEnum))) connection.execute(t.insert(), {"value": MyEnum.two}) assert connection.scalar(t.select()) is MyEnum.two Above, the string names of each element, e.g. "one", "two", "three", are persisted to the database; the values of the Python Enum, here indicated as integers, are **not** used; the value of each enum can therefore be any kind of Python object whether or not it is persistable. In order to persist the values and not the names, the :paramref:`.Enum.values_callable` parameter may be used. The value of this parameter is a user-supplied callable, which is intended to be used with a PEP-435-compliant enumerated class and returns a list of string values to be persisted. For a simple enumeration that uses string values, a callable such as ``lambda x: [e.value for e in x]`` is sufficient. .. seealso:: :ref:`orm_declarative_mapped_column_enums` - background on using the :class:`_sqltypes.Enum` datatype with the ORM's :ref:`ORM Annotated Declarative <orm_declarative_mapped_column>` feature. :class:`_postgresql.ENUM` - PostgreSQL-specific type, which has additional functionality. :class:`.mysql.ENUM` - MySQL-specific type """ __visit_name__ = "enum" def __init__(self, *enums: object, **kw: Any): r"""Construct an enum. Keyword arguments which don't apply to a specific backend are ignored by that backend. :param \*enums: either exactly one PEP-435 compliant enumerated type or one or more string labels. :param create_constraint: defaults to False. When creating a non-native enumerated type, also build a CHECK constraint on the database against the valid values. .. note:: it is strongly recommended that the CHECK constraint have an explicit name in order to support schema-management concerns. This can be established either by setting the :paramref:`.Enum.name` parameter or by setting up an appropriate naming convention; see :ref:`constraint_naming_conventions` for background. .. versionchanged:: 1.4 - this flag now defaults to False, meaning no CHECK constraint is generated for a non-native enumerated type. :param metadata: Associate this type directly with a ``MetaData`` object. For types that exist on the target database as an independent schema construct (PostgreSQL), this type will be created and dropped within ``create_all()`` and ``drop_all()`` operations. If the type is not associated with any ``MetaData`` object, it will associate itself with each ``Table`` in which it is used, and will be created when any of those individual tables are created, after a check is performed for its existence. The type is only dropped when ``drop_all()`` is called for that ``Table`` object's metadata, however. The value of the :paramref:`_schema.MetaData.schema` parameter of the :class:`_schema.MetaData` object, if set, will be used as the default value of the :paramref:`_types.Enum.schema` on this object if an explicit value is not otherwise supplied. .. versionchanged:: 1.4.12 :class:`_types.Enum` inherits the :paramref:`_schema.MetaData.schema` parameter of the :class:`_schema.MetaData` object if present, when passed using the :paramref:`_types.Enum.metadata` parameter. :param name: The name of this type. This is required for PostgreSQL and any future supported database which requires an explicitly named type, or an explicitly named constraint in order to generate the type and/or a table that uses it. If a PEP-435 enumerated class was used, its name (converted to lower case) is used by default. :param native_enum: Use the database's native ENUM type when available. Defaults to True. When False, uses VARCHAR + check constraint for all backends. When False, the VARCHAR length can be controlled with :paramref:`.Enum.length`; currently "length" is ignored if native_enum=True. :param length: Allows specifying a custom length for the VARCHAR when a non-native enumeration datatype is used. By default it uses the length of the longest value. .. versionchanged:: 2.0.0 The :paramref:`.Enum.length` parameter is used unconditionally for ``VARCHAR`` rendering regardless of the :paramref:`.Enum.native_enum` parameter, for those backends where ``VARCHAR`` is used for enumerated datatypes. :param schema: Schema name of this type. For types that exist on the target database as an independent schema construct (PostgreSQL), this parameter specifies the named schema in which the type is present. If not present, the schema name will be taken from the :class:`_schema.MetaData` collection if passed as :paramref:`_types.Enum.metadata`, for a :class:`_schema.MetaData` that includes the :paramref:`_schema.MetaData.schema` parameter. .. versionchanged:: 1.4.12 :class:`_types.Enum` inherits the :paramref:`_schema.MetaData.schema` parameter of the :class:`_schema.MetaData` object if present, when passed using the :paramref:`_types.Enum.metadata` parameter. Otherwise, if the :paramref:`_types.Enum.inherit_schema` flag is set to ``True``, the schema will be inherited from the associated :class:`_schema.Table` object if any; when :paramref:`_types.Enum.inherit_schema` is at its default of ``False``, the owning table's schema is **not** used. :param quote: Set explicit quoting preferences for the type's name. :param inherit_schema: When ``True``, the "schema" from the owning :class:`_schema.Table` will be copied to the "schema" attribute of this :class:`.Enum`, replacing whatever value was passed for the ``schema`` attribute. This also takes effect when using the :meth:`_schema.Table.to_metadata` operation. :param validate_strings: when True, string values that are being passed to the database in a SQL statement will be checked for validity against the list of enumerated values. Unrecognized values will result in a ``LookupError`` being raised. :param values_callable: A callable which will be passed the PEP-435 compliant enumerated type, which should then return a list of string values to be persisted. This allows for alternate usages such as using the string value of an enum to be persisted to the database instead of its name. The callable must return the values to be persisted in the same order as iterating through the Enum's ``__member__`` attribute. For example ``lambda x: [i.value for i in x]``. .. versionadded:: 1.2.3 :param sort_key_function: a Python callable which may be used as the "key" argument in the Python ``sorted()`` built-in. The SQLAlchemy ORM requires that primary key columns which are mapped must be sortable in some way. When using an unsortable enumeration object such as a Python 3 ``Enum`` object, this parameter may be used to set a default sort key function for the objects. By default, the database value of the enumeration is used as the sorting function. .. versionadded:: 1.3.8 :param omit_aliases: A boolean that when true will remove aliases from pep 435 enums. defaults to ``True``. .. versionchanged:: 2.0 This parameter now defaults to True. """ self._enum_init(enums, kw) @property def _enums_argument(self): if self.enum_class is not None: return [self.enum_class] else: return self.enums def _enum_init(self, enums, kw): """internal init for :class:`.Enum` and subclasses. friendly init helper used by subclasses to remove all the Enum-specific keyword arguments from kw. Allows all other arguments in kw to pass through. """ self.native_enum = kw.pop("native_enum", True) self.create_constraint = kw.pop("create_constraint", False) self.values_callable = kw.pop("values_callable", None) self._sort_key_function = kw.pop("sort_key_function", NO_ARG) length_arg = kw.pop("length", NO_ARG) self._omit_aliases = kw.pop("omit_aliases", True) _disable_warnings = kw.pop("_disable_warnings", False) values, objects = self._parse_into_values(enums, kw) self._setup_for_values(values, objects, kw) self.validate_strings = kw.pop("validate_strings", False) if self.enums: self._default_length = length = max(len(x) for x in self.enums) else: self._default_length = length = 0 if length_arg is not NO_ARG: if ( not _disable_warnings and length_arg is not None and length_arg < length ): raise ValueError( "When provided, length must be larger or equal" " than the length of the longest enum value. %s < %s" % (length_arg, length) ) length = length_arg self._valid_lookup[None] = self._object_lookup[None] = None super().__init__(length=length) # assign name to the given enum class if no other name, and this # enum is not an "empty" enum. if the enum is "empty" we assume # this is a template enum that will be used to generate # new Enum classes. if self.enum_class and values: kw.setdefault("name", self.enum_class.__name__.lower()) SchemaType.__init__( self, name=kw.pop("name", None), schema=kw.pop("schema", None), metadata=kw.pop("metadata", None), inherit_schema=kw.pop("inherit_schema", False), quote=kw.pop("quote", None), _create_events=kw.pop("_create_events", True), _adapted_from=kw.pop("_adapted_from", None), ) def _parse_into_values(self, enums, kw): if not enums and "_enums" in kw: enums = kw.pop("_enums") if len(enums) == 1 and hasattr(enums[0], "__members__"): self.enum_class = enums[0] _members = self.enum_class.__members__ if self._omit_aliases is True: # remove aliases members = OrderedDict( (n, v) for n, v in _members.items() if v.name == n ) else: members = _members if self.values_callable: values = self.values_callable(self.enum_class) else: values = list(members) objects = [members[k] for k in members] return values, objects else: self.enum_class = None return enums, enums def _resolve_for_literal(self, value: Any) -> Enum: tv = type(value) typ = self._resolve_for_python_type(tv, tv, tv) assert typ is not None return typ def _resolve_for_python_type( self, python_type: Type[Any], matched_on: _MatchedOnType, matched_on_flattened: Type[Any], ) -> Optional[Enum]: # "generic form" indicates we were placed in a type map # as ``sqlalchemy.Enum(enum.Enum)`` which indicates we need to # get enumerated values from the datatype we_are_generic_form = self._enums_argument == [enum.Enum] native_enum = None def process_literal(pt): # for a literal, where we need to get its contents, parse it out. enum_args = get_args(pt) bad_args = [arg for arg in enum_args if not isinstance(arg, str)] if bad_args: raise exc.ArgumentError( f"Can't create string-based Enum datatype from non-string " f"values: {', '.join(repr(x) for x in bad_args)}. Please " f"provide an explicit Enum datatype for this Python type" ) native_enum = False return enum_args, native_enum if not we_are_generic_form and python_type is matched_on: # if we have enumerated values, and the incoming python # type is exactly the one that matched in the type map, # then we use these enumerated values and dont try to parse # what's incoming enum_args = self._enums_argument elif is_literal(python_type): enum_args, native_enum = process_literal(python_type) elif is_pep695(python_type): value = python_type.__value__ if is_pep695(value): new_value = value while is_pep695(new_value): new_value = new_value.__value__ if is_literal(new_value): value = new_value warn_deprecated( f"Mapping recursive TypeAliasType '{python_type}' " "that resolve to literal to generate an Enum is " "deprecated. SQLAlchemy 2.1 will not support this " "use case. Please avoid using recursing " "TypeAliasType.", "2.0", ) if not is_literal(value): raise exc.ArgumentError( f"Can't associate TypeAliasType '{python_type}' to an " "Enum since it's not a direct alias of a Literal. Only " "aliases in this form `type my_alias = Literal['a', " "'b']` are supported when generating Enums." ) enum_args, native_enum = process_literal(value) elif isinstance(python_type, type) and issubclass( python_type, enum.Enum ): # same for an enum.Enum enum_args = [python_type] else: enum_args = self._enums_argument # make a new Enum that looks like this one. # arguments or other rules kw = self._make_enum_kw({}) if native_enum is False: kw["native_enum"] = False kw["length"] = NO_ARG if self.length == 0 else self.length return cast( Enum, self._generic_type_affinity(_enums=enum_args, **kw), # type: ignore # noqa: E501 ) def _setup_for_values(self, values, objects, kw): self.enums = list(values) self._valid_lookup = dict(zip(reversed(objects), reversed(values))) self._object_lookup = dict(zip(values, objects)) self._valid_lookup.update( [ (value, self._valid_lookup[self._object_lookup[value]]) for value in values ] ) @property def sort_key_function(self): if self._sort_key_function is NO_ARG: return self._db_value_for_elem else: return self._sort_key_function @property def native(self): return self.native_enum def _db_value_for_elem(self, elem): try: return self._valid_lookup[elem] except KeyError as err: # for unknown string values, we return as is. While we can # validate these if we wanted, that does not allow for lesser-used # end-user use cases, such as using a LIKE comparison with an enum, # or for an application that wishes to apply string tests to an # ENUM (see [ticket:3725]). While we can decide to differentiate # here between an INSERT statement and a criteria used in a SELECT, # for now we're staying conservative w/ behavioral changes (perhaps # someone has a trigger that handles strings on INSERT) if not self.validate_strings and isinstance(elem, str): return elem else: raise LookupError( "'%s' is not among the defined enum values. " "Enum name: %s. Possible values: %s" % ( elem, self.name, langhelpers.repr_tuple_names(self.enums), ) ) from err class Comparator(String.Comparator[str]): __slots__ = () type: String def _adapt_expression( self, op: OperatorType, other_comparator: TypeEngine.Comparator[Any], ) -> Tuple[OperatorType, TypeEngine[Any]]: op, typ = super()._adapt_expression(op, other_comparator) if op is operators.concat_op: typ = String(self.type.length) return op, typ comparator_factory = Comparator def _object_value_for_elem(self, elem): try: return self._object_lookup[elem] except KeyError as err: raise LookupError( "'%s' is not among the defined enum values. " "Enum name: %s. Possible values: %s" % ( elem, self.name, langhelpers.repr_tuple_names(self.enums), ) ) from err def __repr__(self): return util.generic_repr( self, additional_kw=[ ("native_enum", True), ("create_constraint", False), ("length", self._default_length), ], to_inspect=[Enum, SchemaType], ) def as_generic(self, allow_nulltype=False): try: args = self.enums except AttributeError: raise NotImplementedError( "TypeEngine.as_generic() heuristic " "is undefined for types that inherit Enum but do not have " "an `enums` attribute." ) from None return util.constructor_copy( self, self._generic_type_affinity, *args, _disable_warnings=True ) def _make_enum_kw(self, kw): kw.setdefault("validate_strings", self.validate_strings) if self.name: kw.setdefault("name", self.name) kw.setdefault("schema", self.schema) kw.setdefault("inherit_schema", self.inherit_schema) kw.setdefault("metadata", self.metadata) kw.setdefault("native_enum", self.native_enum) kw.setdefault("values_callable", self.values_callable) kw.setdefault("create_constraint", self.create_constraint) kw.setdefault("length", self.length) kw.setdefault("omit_aliases", self._omit_aliases) return kw def adapt_to_emulated(self, impltype, **kw): self._make_enum_kw(kw) kw["_disable_warnings"] = True kw.setdefault("_create_events", False) assert "_enums" in kw return impltype(**kw) def adapt(self, cls, **kw): kw["_enums"] = self._enums_argument kw["_disable_warnings"] = True return super().adapt(cls, **kw) def _should_create_constraint(self, compiler, **kw): if not self._is_impl_for_variant(compiler.dialect, kw): return False return ( not self.native_enum or not compiler.dialect.supports_native_enum ) @util.preload_module("sqlalchemy.sql.schema") def _set_table(self, column, table): schema = util.preloaded.sql_schema SchemaType._set_table(self, column, table) if not self.create_constraint: return variant_mapping = self._variant_mapping_for_set_table(column) e = schema.CheckConstraint( type_coerce(column, String()).in_(self.enums), name=_NONE_NAME if self.name is None else self.name, _create_rule=util.portable_instancemethod( self._should_create_constraint, {"variant_mapping": variant_mapping}, ), _type_bound=True, ) assert e.table is table def literal_processor(self, dialect): parent_processor = super().literal_processor(dialect) def process(value): value = self._db_value_for_elem(value) if parent_processor: value = parent_processor(value) return value return process def bind_processor(self, dialect): parent_processor = super().bind_processor(dialect) def process(value): value = self._db_value_for_elem(value) if parent_processor: value = parent_processor(value) return value return process def result_processor(self, dialect, coltype): parent_processor = super().result_processor(dialect, coltype) def process(value): if parent_processor: value = parent_processor(value) value = self._object_value_for_elem(value) return value return process def copy(self, **kw): return SchemaType.copy(self, **kw) @property def python_type(self): if self.enum_class: return self.enum_class else: return super().python_type class PickleType(TypeDecorator[object]): """Holds Python objects, which are serialized using pickle. PickleType builds upon the Binary type to apply Python's ``pickle.dumps()`` to incoming objects, and ``pickle.loads()`` on the way out, allowing any pickleable Python object to be stored as a serialized binary field. To allow ORM change events to propagate for elements associated with :class:`.PickleType`, see :ref:`mutable_toplevel`. """ impl = LargeBinary cache_ok = True def __init__( self, protocol: int = pickle.HIGHEST_PROTOCOL, pickler: Any = None, comparator: Optional[Callable[[Any, Any], bool]] = None, impl: Optional[_TypeEngineArgument[Any]] = None, ): """ Construct a PickleType. :param protocol: defaults to ``pickle.HIGHEST_PROTOCOL``. :param pickler: defaults to pickle. May be any object with pickle-compatible ``dumps`` and ``loads`` methods. :param comparator: a 2-arg callable predicate used to compare values of this type. If left as ``None``, the Python "equals" operator is used to compare values. :param impl: A binary-storing :class:`_types.TypeEngine` class or instance to use in place of the default :class:`_types.LargeBinary`. For example the :class: `_mysql.LONGBLOB` class may be more effective when using MySQL. .. versionadded:: 1.4.20 """ self.protocol = protocol self.pickler = pickler or pickle self.comparator = comparator super().__init__() if impl: # custom impl is not necessarily a LargeBinary subclass. # make an exception to typing for this self.impl = to_instance(impl) # type: ignore def __reduce__(self): return PickleType, (self.protocol, None, self.comparator) def bind_processor(self, dialect): impl_processor = self.impl_instance.bind_processor(dialect) dumps = self.pickler.dumps protocol = self.protocol if impl_processor: fixed_impl_processor = impl_processor def process(value): if value is not None: value = dumps(value, protocol) return fixed_impl_processor(value) else: def process(value): if value is not None: value = dumps(value, protocol) return value return process def result_processor(self, dialect, coltype): impl_processor = self.impl_instance.result_processor(dialect, coltype) loads = self.pickler.loads if impl_processor: fixed_impl_processor = impl_processor def process(value): value = fixed_impl_processor(value) if value is None: return None return loads(value) else: def process(value): if value is None: return None return loads(value) return process def compare_values(self, x, y): if self.comparator: return self.comparator(x, y) else: return x == y class Boolean(SchemaType, Emulated, TypeEngine[bool]): """A bool datatype. :class:`.Boolean` typically uses BOOLEAN or SMALLINT on the DDL side, and on the Python side deals in ``True`` or ``False``. The :class:`.Boolean` datatype currently has two levels of assertion that the values persisted are simple true/false values. For all backends, only the Python values ``None``, ``True``, ``False``, ``1`` or ``0`` are accepted as parameter values. For those backends that don't support a "native boolean" datatype, an option exists to also create a CHECK constraint on the target column .. versionchanged:: 1.2 the :class:`.Boolean` datatype now asserts that incoming Python values are already in pure boolean form. """ __visit_name__ = "boolean" native = True def __init__( self, create_constraint: bool = False, name: Optional[str] = None, _create_events: bool = True, _adapted_from: Optional[SchemaType] = None, ): """Construct a Boolean. :param create_constraint: defaults to False. If the boolean is generated as an int/smallint, also create a CHECK constraint on the table that ensures 1 or 0 as a value. .. note:: it is strongly recommended that the CHECK constraint have an explicit name in order to support schema-management concerns. This can be established either by setting the :paramref:`.Boolean.name` parameter or by setting up an appropriate naming convention; see :ref:`constraint_naming_conventions` for background. .. versionchanged:: 1.4 - this flag now defaults to False, meaning no CHECK constraint is generated for a non-native enumerated type. :param name: if a CHECK constraint is generated, specify the name of the constraint. """ self.create_constraint = create_constraint self.name = name self._create_events = _create_events if _adapted_from: self.dispatch = self.dispatch._join(_adapted_from.dispatch) def copy(self, **kw): # override SchemaType.copy() to not include to_metadata logic return self.adapt( cast("Type[TypeEngine[Any]]", self.__class__), _create_events=True, ) def _should_create_constraint(self, compiler, **kw): if not self._is_impl_for_variant(compiler.dialect, kw): return False return ( not compiler.dialect.supports_native_boolean and compiler.dialect.non_native_boolean_check_constraint ) @util.preload_module("sqlalchemy.sql.schema") def _set_table(self, column, table): schema = util.preloaded.sql_schema if not self.create_constraint: return variant_mapping = self._variant_mapping_for_set_table(column) e = schema.CheckConstraint( type_coerce(column, self).in_([0, 1]), name=_NONE_NAME if self.name is None else self.name, _create_rule=util.portable_instancemethod( self._should_create_constraint, {"variant_mapping": variant_mapping}, ), _type_bound=True, ) assert e.table is table @property def python_type(self): return bool _strict_bools = frozenset([None, True, False]) def _strict_as_bool(self, value): if value not in self._strict_bools: if not isinstance(value, int): raise TypeError("Not a boolean value: %r" % (value,)) else: raise ValueError( "Value %r is not None, True, or False" % (value,) ) return value def literal_processor(self, dialect): compiler = dialect.statement_compiler(dialect, None) true = compiler.visit_true(None) false = compiler.visit_false(None) def process(value): return true if self._strict_as_bool(value) else false return process def bind_processor(self, dialect): _strict_as_bool = self._strict_as_bool _coerce: Union[Type[bool], Type[int]] if dialect.supports_native_boolean: _coerce = bool else: _coerce = int def process(value): value = _strict_as_bool(value) if value is not None: value = _coerce(value) return value return process def result_processor(self, dialect, coltype): if dialect.supports_native_boolean: return None else: return processors.int_to_boolean class _AbstractInterval(HasExpressionLookup, TypeEngine[dt.timedelta]): @util.memoized_property def _expression_adaptations(self): # Based on # https://www.postgresql.org/docs/current/static/functions-datetime.html. return { operators.add: { Date: DateTime, Interval: self.__class__, DateTime: DateTime, Time: Time, }, operators.sub: {Interval: self.__class__}, operators.mul: {Numeric: self.__class__}, operators.truediv: {Numeric: self.__class__}, } @util.ro_non_memoized_property def _type_affinity(self) -> Type[Interval]: return Interval class Interval(Emulated, _AbstractInterval, TypeDecorator[dt.timedelta]): """A type for ``datetime.timedelta()`` objects. The Interval type deals with ``datetime.timedelta`` objects. In PostgreSQL and Oracle Database, the native ``INTERVAL`` type is used; for others, the value is stored as a date which is relative to the "epoch" (Jan. 1, 1970). Note that the ``Interval`` type does not currently provide date arithmetic operations on platforms which do not support interval types natively. Such operations usually require transformation of both sides of the expression (such as, conversion of both sides into integer epoch values first) which currently is a manual procedure (such as via :attr:`~sqlalchemy.sql.expression.func`). """ impl = DateTime epoch = dt.datetime.fromtimestamp(0, dt.timezone.utc).replace(tzinfo=None) cache_ok = True def __init__( self, native: bool = True, second_precision: Optional[int] = None, day_precision: Optional[int] = None, ): """Construct an Interval object. :param native: when True, use the actual INTERVAL type provided by the database, if supported (currently PostgreSQL, Oracle Database). Otherwise, represent the interval data as an epoch value regardless. :param second_precision: For native interval types which support a "fractional seconds precision" parameter, i.e. Oracle Database and PostgreSQL :param day_precision: for native interval types which support a "day precision" parameter, i.e. Oracle Database. """ super().__init__() self.native = native self.second_precision = second_precision self.day_precision = day_precision class Comparator( TypeDecorator.Comparator[_CT], _AbstractInterval.Comparator[_CT], ): __slots__ = () comparator_factory = Comparator @property def python_type(self): return dt.timedelta def adapt_to_emulated(self, impltype, **kw): return _AbstractInterval.adapt(self, impltype, **kw) def coerce_compared_value(self, op, value): return self.impl_instance.coerce_compared_value(op, value) def bind_processor( self, dialect: Dialect ) -> _BindProcessorType[dt.timedelta]: if TYPE_CHECKING: assert isinstance(self.impl_instance, DateTime) impl_processor = self.impl_instance.bind_processor(dialect) epoch = self.epoch if impl_processor: fixed_impl_processor = impl_processor def process( value: Optional[dt.timedelta], ) -> Any: if value is not None: dt_value = epoch + value else: dt_value = None return fixed_impl_processor(dt_value) else: def process( value: Optional[dt.timedelta], ) -> Any: if value is not None: dt_value = epoch + value else: dt_value = None return dt_value return process def result_processor( self, dialect: Dialect, coltype: Any ) -> _ResultProcessorType[dt.timedelta]: if TYPE_CHECKING: assert isinstance(self.impl_instance, DateTime) impl_processor = self.impl_instance.result_processor(dialect, coltype) epoch = self.epoch if impl_processor: fixed_impl_processor = impl_processor def process(value: Any) -> Optional[dt.timedelta]: dt_value = fixed_impl_processor(value) if dt_value is None: return None return dt_value - epoch else: def process(value: Any) -> Optional[dt.timedelta]: if value is None: return None return value - epoch # type: ignore return process class JSON(Indexable, TypeEngine[Any]): """Represent a SQL JSON type. .. note:: :class:`_types.JSON` is provided as a facade for vendor-specific JSON types. Since it supports JSON SQL operations, it only works on backends that have an actual JSON type, currently: * PostgreSQL - see :class:`sqlalchemy.dialects.postgresql.JSON` and :class:`sqlalchemy.dialects.postgresql.JSONB` for backend-specific notes * MySQL - see :class:`sqlalchemy.dialects.mysql.JSON` for backend-specific notes * SQLite as of version 3.9 - see :class:`sqlalchemy.dialects.sqlite.JSON` for backend-specific notes * Microsoft SQL Server 2016 and later - see :class:`sqlalchemy.dialects.mssql.JSON` for backend-specific notes :class:`_types.JSON` is part of the Core in support of the growing popularity of native JSON datatypes. The :class:`_types.JSON` type stores arbitrary JSON format data, e.g.:: data_table = Table( "data_table", metadata, Column("id", Integer, primary_key=True), Column("data", JSON), ) with engine.connect() as conn: conn.execute( data_table.insert(), {"data": {"key1": "value1", "key2": "value2"}} ) **JSON-Specific Expression Operators** The :class:`_types.JSON` datatype provides these additional SQL operations: * Keyed index operations:: data_table.c.data["some key"] * Integer index operations:: data_table.c.data[3] * Path index operations:: data_table.c.data[("key_1", "key_2", 5, ..., "key_n")] * Data casters for specific JSON element types, subsequent to an index or path operation being invoked:: data_table.c.data["some key"].as_integer() .. versionadded:: 1.3.11 Additional operations may be available from the dialect-specific versions of :class:`_types.JSON`, such as :class:`sqlalchemy.dialects.postgresql.JSON` and :class:`sqlalchemy.dialects.postgresql.JSONB` which both offer additional PostgreSQL-specific operations. **Casting JSON Elements to Other Types** Index operations, i.e. those invoked by calling upon the expression using the Python bracket operator as in ``some_column['some key']``, return an expression object whose type defaults to :class:`_types.JSON` by default, so that further JSON-oriented instructions may be called upon the result type. However, it is likely more common that an index operation is expected to return a specific scalar element, such as a string or integer. In order to provide access to these elements in a backend-agnostic way, a series of data casters are provided: * :meth:`.JSON.Comparator.as_string` - return the element as a string * :meth:`.JSON.Comparator.as_boolean` - return the element as a boolean * :meth:`.JSON.Comparator.as_float` - return the element as a float * :meth:`.JSON.Comparator.as_integer` - return the element as an integer These data casters are implemented by supporting dialects in order to assure that comparisons to the above types will work as expected, such as:: # integer comparison data_table.c.data["some_integer_key"].as_integer() == 5 # boolean comparison data_table.c.data["some_boolean"].as_boolean() == True .. versionadded:: 1.3.11 Added type-specific casters for the basic JSON data element types. .. note:: The data caster functions are new in version 1.3.11, and supersede the previous documented approaches of using CAST; for reference, this looked like:: from sqlalchemy import cast, type_coerce from sqlalchemy import String, JSON cast(data_table.c.data["some_key"], String) == type_coerce(55, JSON) The above case now works directly as:: data_table.c.data["some_key"].as_integer() == 5 For details on the previous comparison approach within the 1.3.x series, see the documentation for SQLAlchemy 1.2 or the included HTML files in the doc/ directory of the version's distribution. **Detecting Changes in JSON columns when using the ORM** The :class:`_types.JSON` type, when used with the SQLAlchemy ORM, does not detect in-place mutations to the structure. In order to detect these, the :mod:`sqlalchemy.ext.mutable` extension must be used, most typically using the :class:`.MutableDict` class. This extension will allow "in-place" changes to the datastructure to produce events which will be detected by the unit of work. See the example at :class:`.HSTORE` for a simple example involving a dictionary. Alternatively, assigning a JSON structure to an ORM element that replaces the old one will always trigger a change event. **Support for JSON null vs. SQL NULL** When working with NULL values, the :class:`_types.JSON` type recommends the use of two specific constants in order to differentiate between a column that evaluates to SQL NULL, e.g. no value, vs. the JSON-encoded string of ``"null"``. To insert or select against a value that is SQL NULL, use the constant :func:`.null`. This symbol may be passed as a parameter value specifically when using the :class:`_types.JSON` datatype, which contains special logic that interprets this symbol to mean that the column value should be SQL NULL as opposed to JSON ``"null"``:: from sqlalchemy import null conn.execute(table.insert(), {"json_value": null()}) To insert or select against a value that is JSON ``"null"``, use the constant :attr:`_types.JSON.NULL`:: conn.execute(table.insert(), {"json_value": JSON.NULL}) The :class:`_types.JSON` type supports a flag :paramref:`_types.JSON.none_as_null` which when set to True will result in the Python constant ``None`` evaluating to the value of SQL NULL, and when set to False results in the Python constant ``None`` evaluating to the value of JSON ``"null"``. The Python value ``None`` may be used in conjunction with either :attr:`_types.JSON.NULL` and :func:`.null` in order to indicate NULL values, but care must be taken as to the value of the :paramref:`_types.JSON.none_as_null` in these cases. **Customizing the JSON Serializer** The JSON serializer and deserializer used by :class:`_types.JSON` defaults to Python's ``json.dumps`` and ``json.loads`` functions; in the case of the psycopg2 dialect, psycopg2 may be using its own custom loader function. In order to affect the serializer / deserializer, they are currently configurable at the :func:`_sa.create_engine` level via the :paramref:`_sa.create_engine.json_serializer` and :paramref:`_sa.create_engine.json_deserializer` parameters. For example, to turn off ``ensure_ascii``:: engine = create_engine( "sqlite://", json_serializer=lambda obj: json.dumps(obj, ensure_ascii=False), ) .. versionchanged:: 1.3.7 SQLite dialect's ``json_serializer`` and ``json_deserializer`` parameters renamed from ``_json_serializer`` and ``_json_deserializer``. .. seealso:: :class:`sqlalchemy.dialects.postgresql.JSON` :class:`sqlalchemy.dialects.postgresql.JSONB` :class:`sqlalchemy.dialects.mysql.JSON` :class:`sqlalchemy.dialects.sqlite.JSON` """ # noqa: E501 __visit_name__ = "JSON" hashable = False NULL = util.symbol("JSON_NULL") """Describe the json value of NULL. This value is used to force the JSON value of ``"null"`` to be used as the value. A value of Python ``None`` will be recognized either as SQL NULL or JSON ``"null"``, based on the setting of the :paramref:`_types.JSON.none_as_null` flag; the :attr:`_types.JSON.NULL` constant can be used to always resolve to JSON ``"null"`` regardless of this setting. This is in contrast to the :func:`_expression.null` construct, which always resolves to SQL NULL. E.g.:: from sqlalchemy import null from sqlalchemy.dialects.postgresql import JSON # will *always* insert SQL NULL obj1 = MyObject(json_value=null()) # will *always* insert JSON string "null" obj2 = MyObject(json_value=JSON.NULL) session.add_all([obj1, obj2]) session.commit() In order to set JSON NULL as a default value for a column, the most transparent method is to use :func:`_expression.text`:: Table( "my_table", metadata, Column("json_data", JSON, default=text("'null'")) ) While it is possible to use :attr:`_types.JSON.NULL` in this context, the :attr:`_types.JSON.NULL` value will be returned as the value of the column, which in the context of the ORM or other repurposing of the default value, may not be desirable. Using a SQL expression means the value will be re-fetched from the database within the context of retrieving generated defaults. """ # noqa: E501 def __init__(self, none_as_null: bool = False): """Construct a :class:`_types.JSON` type. :param none_as_null=False: if True, persist the value ``None`` as a SQL NULL value, not the JSON encoding of ``null``. Note that when this flag is False, the :func:`.null` construct can still be used to persist a NULL value, which may be passed directly as a parameter value that is specially interpreted by the :class:`_types.JSON` type as SQL NULL:: from sqlalchemy import null conn.execute(table.insert(), {"data": null()}) .. note:: :paramref:`_types.JSON.none_as_null` does **not** apply to the values passed to :paramref:`_schema.Column.default` and :paramref:`_schema.Column.server_default`; a value of ``None`` passed for these parameters means "no default present". Additionally, when used in SQL comparison expressions, the Python value ``None`` continues to refer to SQL null, and not JSON NULL. The :paramref:`_types.JSON.none_as_null` flag refers explicitly to the **persistence** of the value within an INSERT or UPDATE statement. The :attr:`_types.JSON.NULL` value should be used for SQL expressions that wish to compare to JSON null. .. seealso:: :attr:`.types.JSON.NULL` """ self.none_as_null = none_as_null class JSONElementType(TypeEngine[Any]): """Common function for index / path elements in a JSON expression.""" _integer = Integer() _string = String() def string_bind_processor( self, dialect: Dialect ) -> Optional[_BindProcessorType[str]]: return self._string._cached_bind_processor(dialect) def string_literal_processor( self, dialect: Dialect ) -> Optional[_LiteralProcessorType[str]]: return self._string._cached_literal_processor(dialect) def bind_processor(self, dialect: Dialect) -> _BindProcessorType[Any]: int_processor = self._integer._cached_bind_processor(dialect) string_processor = self.string_bind_processor(dialect) def process(value: Optional[Any]) -> Any: if int_processor and isinstance(value, int): value = int_processor(value) elif string_processor and isinstance(value, str): value = string_processor(value) return value return process def literal_processor( self, dialect: Dialect ) -> _LiteralProcessorType[Any]: int_processor = self._integer._cached_literal_processor(dialect) string_processor = self.string_literal_processor(dialect) def process(value: Optional[Any]) -> Any: if int_processor and isinstance(value, int): value = int_processor(value) elif string_processor and isinstance(value, str): value = string_processor(value) else: raise NotImplementedError() return value return process class JSONIndexType(JSONElementType): """Placeholder for the datatype of a JSON index value. This allows execution-time processing of JSON index values for special syntaxes. """ class JSONIntIndexType(JSONIndexType): """Placeholder for the datatype of a JSON index value. This allows execution-time processing of JSON index values for special syntaxes. """ class JSONStrIndexType(JSONIndexType): """Placeholder for the datatype of a JSON index value. This allows execution-time processing of JSON index values for special syntaxes. """ class JSONPathType(JSONElementType): """Placeholder type for JSON path operations. This allows execution-time processing of a path-based index value into a specific SQL syntax. """ __visit_name__ = "json_path" class Comparator(Indexable.Comparator[_T], Concatenable.Comparator[_T]): """Define comparison operations for :class:`_types.JSON`.""" __slots__ = () type: JSON def _setup_getitem(self, index): if not isinstance(index, str) and isinstance( index, collections_abc.Sequence ): index = coercions.expect( roles.BinaryElementRole, index, expr=self.expr, operator=operators.json_path_getitem_op, bindparam_type=JSON.JSONPathType, ) operator = operators.json_path_getitem_op else: index = coercions.expect( roles.BinaryElementRole, index, expr=self.expr, operator=operators.json_getitem_op, bindparam_type=( JSON.JSONIntIndexType if isinstance(index, int) else JSON.JSONStrIndexType ), ) operator = operators.json_getitem_op return operator, index, self.type def as_boolean(self): """Consider an indexed value as boolean. This is similar to using :class:`_sql.type_coerce`, and will usually not apply a ``CAST()``. e.g.:: stmt = select(mytable.c.json_column["some_data"].as_boolean()).where( mytable.c.json_column["some_data"].as_boolean() == True ) .. versionadded:: 1.3.11 """ # noqa: E501 return self._binary_w_type(Boolean(), "as_boolean") def as_string(self): """Consider an indexed value as string. This is similar to using :class:`_sql.type_coerce`, and will usually not apply a ``CAST()``. e.g.:: stmt = select(mytable.c.json_column["some_data"].as_string()).where( mytable.c.json_column["some_data"].as_string() == "some string" ) .. versionadded:: 1.3.11 """ # noqa: E501 return self._binary_w_type(Unicode(), "as_string") def as_integer(self): """Consider an indexed value as integer. This is similar to using :class:`_sql.type_coerce`, and will usually not apply a ``CAST()``. e.g.:: stmt = select(mytable.c.json_column["some_data"].as_integer()).where( mytable.c.json_column["some_data"].as_integer() == 5 ) .. versionadded:: 1.3.11 """ # noqa: E501 return self._binary_w_type(Integer(), "as_integer") def as_float(self): """Consider an indexed value as float. This is similar to using :class:`_sql.type_coerce`, and will usually not apply a ``CAST()``. e.g.:: stmt = select(mytable.c.json_column["some_data"].as_float()).where( mytable.c.json_column["some_data"].as_float() == 29.75 ) .. versionadded:: 1.3.11 """ # noqa: E501 return self._binary_w_type(Float(), "as_float") def as_numeric(self, precision, scale, asdecimal=True): """Consider an indexed value as numeric/decimal. This is similar to using :class:`_sql.type_coerce`, and will usually not apply a ``CAST()``. e.g.:: stmt = select(mytable.c.json_column["some_data"].as_numeric(10, 6)).where( mytable.c.json_column["some_data"].as_numeric(10, 6) == 29.75 ) .. versionadded:: 1.4.0b2 """ # noqa: E501 return self._binary_w_type( Numeric(precision, scale, asdecimal=asdecimal), "as_numeric" ) def as_json(self): """Consider an indexed value as JSON. This is similar to using :class:`_sql.type_coerce`, and will usually not apply a ``CAST()``. e.g.:: stmt = select(mytable.c.json_column["some_data"].as_json()) This is typically the default behavior of indexed elements in any case. Note that comparison of full JSON structures may not be supported by all backends. .. versionadded:: 1.3.11 """ return self.expr def _binary_w_type(self, typ, method_name): if not isinstance( self.expr, elements.BinaryExpression ) or self.expr.operator not in ( operators.json_getitem_op, operators.json_path_getitem_op, ): raise exc.InvalidRequestError( "The JSON cast operator JSON.%s() only works with a JSON " "index expression e.g. col['q'].%s()" % (method_name, method_name) ) expr = self.expr._clone() expr.type = typ return expr comparator_factory = Comparator @property def python_type(self): return dict @property # type: ignore # mypy property bug def should_evaluate_none(self): """Alias of :attr:`_types.JSON.none_as_null`""" return not self.none_as_null @should_evaluate_none.setter def should_evaluate_none(self, value): self.none_as_null = not value @util.memoized_property def _str_impl(self): return String() def _make_bind_processor(self, string_process, json_serializer): if string_process: def process(value): if value is self.NULL: value = None elif isinstance(value, elements.Null) or ( value is None and self.none_as_null ): return None serialized = json_serializer(value) return string_process(serialized) else: def process(value): if value is self.NULL: value = None elif isinstance(value, elements.Null) or ( value is None and self.none_as_null ): return None return json_serializer(value) return process def bind_processor(self, dialect): string_process = self._str_impl.bind_processor(dialect) json_serializer = dialect._json_serializer or json.dumps return self._make_bind_processor(string_process, json_serializer) def result_processor(self, dialect, coltype): string_process = self._str_impl.result_processor(dialect, coltype) json_deserializer = dialect._json_deserializer or json.loads def process(value): if value is None: return None if string_process: value = string_process(value) return json_deserializer(value) return process class ARRAY( SchemaEventTarget, Indexable, Concatenable, TypeEngine[Sequence[Any]] ): """Represent a SQL Array type. .. note:: This type serves as the basis for all ARRAY operations. However, currently **only the PostgreSQL backend has support for SQL arrays in SQLAlchemy**. It is recommended to use the PostgreSQL-specific :class:`sqlalchemy.dialects.postgresql.ARRAY` type directly when using ARRAY types with PostgreSQL, as it provides additional operators specific to that backend. :class:`_types.ARRAY` is part of the Core in support of various SQL standard functions such as :class:`_functions.array_agg` which explicitly involve arrays; however, with the exception of the PostgreSQL backend and possibly some third-party dialects, no other SQLAlchemy built-in dialect has support for this type. An :class:`_types.ARRAY` type is constructed given the "type" of element:: mytable = Table("mytable", metadata, Column("data", ARRAY(Integer))) The above type represents an N-dimensional array, meaning a supporting backend such as PostgreSQL will interpret values with any number of dimensions automatically. To produce an INSERT construct that passes in a 1-dimensional array of integers:: connection.execute(mytable.insert(), {"data": [1, 2, 3]}) The :class:`_types.ARRAY` type can be constructed given a fixed number of dimensions:: mytable = Table( "mytable", metadata, Column("data", ARRAY(Integer, dimensions=2)) ) Sending a number of dimensions is optional, but recommended if the datatype is to represent arrays of more than one dimension. This number is used: * When emitting the type declaration itself to the database, e.g. ``INTEGER[][]`` * When translating Python values to database values, and vice versa, e.g. an ARRAY of :class:`.Unicode` objects uses this number to efficiently access the string values inside of array structures without resorting to per-row type inspection * When used with the Python ``getitem`` accessor, the number of dimensions serves to define the kind of type that the ``[]`` operator should return, e.g. for an ARRAY of INTEGER with two dimensions:: >>> expr = table.c.column[5] # returns ARRAY(Integer, dimensions=1) >>> expr = expr[6] # returns Integer For 1-dimensional arrays, an :class:`_types.ARRAY` instance with no dimension parameter will generally assume single-dimensional behaviors. SQL expressions of type :class:`_types.ARRAY` have support for "index" and "slice" behavior. The ``[]`` operator produces expression constructs which will produce the appropriate SQL, both for SELECT statements:: select(mytable.c.data[5], mytable.c.data[2:7]) as well as UPDATE statements when the :meth:`_expression.Update.values` method is used:: mytable.update().values( {mytable.c.data[5]: 7, mytable.c.data[2:7]: [1, 2, 3]} ) Indexed access is one-based by default; for zero-based index conversion, set :paramref:`_types.ARRAY.zero_indexes`. The :class:`_types.ARRAY` type also provides for the operators :meth:`.types.ARRAY.Comparator.any` and :meth:`.types.ARRAY.Comparator.all`. The PostgreSQL-specific version of :class:`_types.ARRAY` also provides additional operators. .. container:: topic **Detecting Changes in ARRAY columns when using the ORM** The :class:`_sqltypes.ARRAY` type, when used with the SQLAlchemy ORM, does not detect in-place mutations to the array. In order to detect these, the :mod:`sqlalchemy.ext.mutable` extension must be used, using the :class:`.MutableList` class:: from sqlalchemy import ARRAY from sqlalchemy.ext.mutable import MutableList class SomeOrmClass(Base): # ... data = Column(MutableList.as_mutable(ARRAY(Integer))) This extension will allow "in-place" changes such to the array such as ``.append()`` to produce events which will be detected by the unit of work. Note that changes to elements **inside** the array, including subarrays that are mutated in place, are **not** detected. Alternatively, assigning a new array value to an ORM element that replaces the old one will always trigger a change event. .. seealso:: :class:`sqlalchemy.dialects.postgresql.ARRAY` """ __visit_name__ = "ARRAY" _is_array = True zero_indexes = False """If True, Python zero-based indexes should be interpreted as one-based on the SQL expression side.""" def __init__( self, item_type: _TypeEngineArgument[Any], as_tuple: bool = False, dimensions: Optional[int] = None, zero_indexes: bool = False, ): """Construct an :class:`_types.ARRAY`. E.g.:: Column("myarray", ARRAY(Integer)) Arguments are: :param item_type: The data type of items of this array. Note that dimensionality is irrelevant here, so multi-dimensional arrays like ``INTEGER[][]``, are constructed as ``ARRAY(Integer)``, not as ``ARRAY(ARRAY(Integer))`` or such. :param as_tuple=False: Specify whether return results should be converted to tuples from lists. This parameter is not generally needed as a Python list corresponds well to a SQL array. :param dimensions: if non-None, the ARRAY will assume a fixed number of dimensions. This impacts how the array is declared on the database, how it goes about interpreting Python and result values, as well as how expression behavior in conjunction with the "getitem" operator works. See the description at :class:`_types.ARRAY` for additional detail. :param zero_indexes=False: when True, index values will be converted between Python zero-based and SQL one-based indexes, e.g. a value of one will be added to all index values before passing to the database. """ if isinstance(item_type, ARRAY): raise ValueError( "Do not nest ARRAY types; ARRAY(basetype) " "handles multi-dimensional arrays of basetype" ) if isinstance(item_type, type): item_type = item_type() self.item_type = item_type self.as_tuple = as_tuple self.dimensions = dimensions self.zero_indexes = zero_indexes class Comparator( Indexable.Comparator[Sequence[Any]], Concatenable.Comparator[Sequence[Any]], ): """Define comparison operations for :class:`_types.ARRAY`. More operators are available on the dialect-specific form of this type. See :class:`.postgresql.ARRAY.Comparator`. """ __slots__ = () type: ARRAY def _setup_getitem(self, index): arr_type = self.type return_type: TypeEngine[Any] if isinstance(index, slice): return_type = arr_type if arr_type.zero_indexes: index = slice(index.start + 1, index.stop + 1, index.step) slice_ = Slice( index.start, index.stop, index.step, _name=self.expr.key ) return operators.getitem, slice_, return_type else: if arr_type.zero_indexes: index += 1 if arr_type.dimensions is None or arr_type.dimensions == 1: return_type = arr_type.item_type else: adapt_kw = {"dimensions": arr_type.dimensions - 1} return_type = arr_type.adapt( arr_type.__class__, **adapt_kw ) return operators.getitem, index, return_type def contains(self, *arg, **kw): """``ARRAY.contains()`` not implemented for the base ARRAY type. Use the dialect-specific ARRAY type. .. seealso:: :class:`_postgresql.ARRAY` - PostgreSQL specific version. """ raise NotImplementedError( "ARRAY.contains() not implemented for the base " "ARRAY type; please use the dialect-specific ARRAY type" ) @util.preload_module("sqlalchemy.sql.elements") def any(self, other, operator=None): """Return ``other operator ANY (array)`` clause. .. legacy:: This method is an :class:`_types.ARRAY` - specific construct that is now superseded by the :func:`_sql.any_` function, which features a different calling style. The :func:`_sql.any_` function is also mirrored at the method level via the :meth:`_sql.ColumnOperators.any_` method. Usage of array-specific :meth:`_types.ARRAY.Comparator.any` is as follows:: from sqlalchemy.sql import operators conn.execute( select(table.c.data).where(table.c.data.any(7, operator=operators.lt)) ) :param other: expression to be compared :param operator: an operator object from the :mod:`sqlalchemy.sql.operators` package, defaults to :func:`.operators.eq`. .. seealso:: :func:`_expression.any_` :meth:`.types.ARRAY.Comparator.all` """ # noqa: E501 elements = util.preloaded.sql_elements operator = operator if operator else operators.eq arr_type = self.type return elements.CollectionAggregate._create_any(self.expr).operate( operators.mirror(operator), coercions.expect( roles.BinaryElementRole, element=other, operator=operator, expr=self.expr, bindparam_type=arr_type.item_type, ), ) @util.preload_module("sqlalchemy.sql.elements") def all(self, other, operator=None): """Return ``other operator ALL (array)`` clause. .. legacy:: This method is an :class:`_types.ARRAY` - specific construct that is now superseded by the :func:`_sql.all_` function, which features a different calling style. The :func:`_sql.all_` function is also mirrored at the method level via the :meth:`_sql.ColumnOperators.all_` method. Usage of array-specific :meth:`_types.ARRAY.Comparator.all` is as follows:: from sqlalchemy.sql import operators conn.execute( select(table.c.data).where(table.c.data.all(7, operator=operators.lt)) ) :param other: expression to be compared :param operator: an operator object from the :mod:`sqlalchemy.sql.operators` package, defaults to :func:`.operators.eq`. .. seealso:: :func:`_expression.all_` :meth:`.types.ARRAY.Comparator.any` """ # noqa: E501 elements = util.preloaded.sql_elements operator = operator if operator else operators.eq arr_type = self.type return elements.CollectionAggregate._create_all(self.expr).operate( operators.mirror(operator), coercions.expect( roles.BinaryElementRole, element=other, operator=operator, expr=self.expr, bindparam_type=arr_type.item_type, ), ) comparator_factory = Comparator @property def hashable(self): return self.as_tuple @property def python_type(self): return list def compare_values(self, x, y): return x == y def _set_parent(self, parent, outer=False, **kw): """Support SchemaEventTarget""" if not outer and isinstance(self.item_type, SchemaEventTarget): self.item_type._set_parent(parent, **kw) def _set_parent_with_dispatch(self, parent, **kw): """Support SchemaEventTarget""" super()._set_parent_with_dispatch(parent, outer=True) if isinstance(self.item_type, SchemaEventTarget): self.item_type._set_parent_with_dispatch(parent) def literal_processor(self, dialect): item_proc = self.item_type.dialect_impl(dialect).literal_processor( dialect ) if item_proc is None: return None def to_str(elements): return f"[{', '.join(elements)}]" def process(value): inner = self._apply_item_processor( value, item_proc, self.dimensions, to_str ) return inner return process def _apply_item_processor(self, arr, itemproc, dim, collection_callable): """Helper method that can be used by bind_processor(), literal_processor(), etc. to apply an item processor to elements of an array value, taking into account the 'dimensions' for this array type. See the Postgresql ARRAY datatype for usage examples. .. versionadded:: 2.0 """ if dim is None: arr = list(arr) if ( dim == 1 or dim is None and ( # this has to be (list, tuple), or at least # not hasattr('__iter__'), since Py3K strings # etc. have __iter__ not arr or not isinstance(arr[0], (list, tuple)) ) ): if itemproc: return collection_callable(itemproc(x) for x in arr) else: return collection_callable(arr) else: return collection_callable( ( self._apply_item_processor( x, itemproc, dim - 1 if dim is not None else None, collection_callable, ) if x is not None else None ) for x in arr ) class TupleType(TypeEngine[Tuple[Any, ...]]): """represent the composite type of a Tuple.""" _is_tuple_type = True types: List[TypeEngine[Any]] def __init__(self, *types: _TypeEngineArgument[Any]): self._fully_typed = NULLTYPE not in types self.types = [ item_type() if isinstance(item_type, type) else item_type for item_type in types ] def coerce_compared_value( self, op: Optional[OperatorType], value: Any ) -> TypeEngine[Any]: if value is type_api._NO_VALUE_IN_LIST: return super().coerce_compared_value(op, value) else: return TupleType( *[ typ.coerce_compared_value(op, elem) for typ, elem in zip(self.types, value) ] ) def _resolve_values_to_types(self, value: Any) -> TupleType: if self._fully_typed: return self else: return TupleType( *[ _resolve_value_to_type(elem) if typ is NULLTYPE else typ for typ, elem in zip(self.types, value) ] ) def result_processor(self, dialect, coltype): raise NotImplementedError( "The tuple type does not support being fetched " "as a column in a result row." ) class REAL(Float[_N]): """The SQL REAL type. .. seealso:: :class:`_types.Float` - documentation for the base type. """ __visit_name__ = "REAL" class FLOAT(Float[_N]): """The SQL FLOAT type. .. seealso:: :class:`_types.Float` - documentation for the base type. """ __visit_name__ = "FLOAT" class DOUBLE(Double[_N]): """The SQL DOUBLE type. .. versionadded:: 2.0 .. seealso:: :class:`_types.Double` - documentation for the base type. """ __visit_name__ = "DOUBLE" class DOUBLE_PRECISION(Double[_N]): """The SQL DOUBLE PRECISION type. .. versionadded:: 2.0 .. seealso:: :class:`_types.Double` - documentation for the base type. """ __visit_name__ = "DOUBLE_PRECISION" class NUMERIC(Numeric[_N]): """The SQL NUMERIC type. .. seealso:: :class:`_types.Numeric` - documentation for the base type. """ __visit_name__ = "NUMERIC" class DECIMAL(Numeric[_N]): """The SQL DECIMAL type. .. seealso:: :class:`_types.Numeric` - documentation for the base type. """ __visit_name__ = "DECIMAL" class INTEGER(Integer): """The SQL INT or INTEGER type. .. seealso:: :class:`_types.Integer` - documentation for the base type. """ __visit_name__ = "INTEGER" INT = INTEGER class SMALLINT(SmallInteger): """The SQL SMALLINT type. .. seealso:: :class:`_types.SmallInteger` - documentation for the base type. """ __visit_name__ = "SMALLINT" class BIGINT(BigInteger): """The SQL BIGINT type. .. seealso:: :class:`_types.BigInteger` - documentation for the base type. """ __visit_name__ = "BIGINT" class TIMESTAMP(DateTime): """The SQL TIMESTAMP type. :class:`_types.TIMESTAMP` datatypes have support for timezone storage on some backends, such as PostgreSQL and Oracle Database. Use the :paramref:`~types.TIMESTAMP.timezone` argument in order to enable "TIMESTAMP WITH TIMEZONE" for these backends. """ __visit_name__ = "TIMESTAMP" def __init__(self, timezone: bool = False): """Construct a new :class:`_types.TIMESTAMP`. :param timezone: boolean. Indicates that the TIMESTAMP type should enable timezone support, if available on the target database. On a per-dialect basis is similar to "TIMESTAMP WITH TIMEZONE". If the target database does not support timezones, this flag is ignored. """ super().__init__(timezone=timezone) def get_dbapi_type(self, dbapi): return dbapi.TIMESTAMP class DATETIME(DateTime): """The SQL DATETIME type.""" __visit_name__ = "DATETIME" class DATE(Date): """The SQL DATE type.""" __visit_name__ = "DATE" class TIME(Time): """The SQL TIME type.""" __visit_name__ = "TIME" class TEXT(Text): """The SQL TEXT type.""" __visit_name__ = "TEXT" class CLOB(Text): """The CLOB type. This type is found in Oracle Database and Informix. """ __visit_name__ = "CLOB" class VARCHAR(String): """The SQL VARCHAR type.""" __visit_name__ = "VARCHAR" class NVARCHAR(Unicode): """The SQL NVARCHAR type.""" __visit_name__ = "NVARCHAR" class CHAR(String): """The SQL CHAR type.""" __visit_name__ = "CHAR" class NCHAR(Unicode): """The SQL NCHAR type.""" __visit_name__ = "NCHAR" class BLOB(LargeBinary): """The SQL BLOB type.""" __visit_name__ = "BLOB" class BINARY(_Binary): """The SQL BINARY type.""" __visit_name__ = "BINARY" class VARBINARY(_Binary): """The SQL VARBINARY type.""" __visit_name__ = "VARBINARY" class BOOLEAN(Boolean): """The SQL BOOLEAN type.""" __visit_name__ = "BOOLEAN" class NullType(TypeEngine[None]): """An unknown type. :class:`.NullType` is used as a default type for those cases where a type cannot be determined, including: * During table reflection, when the type of a column is not recognized by the :class:`.Dialect` * When constructing SQL expressions using plain Python objects of unknown types (e.g. ``somecolumn == my_special_object``) * When a new :class:`_schema.Column` is created, and the given type is passed as ``None`` or is not passed at all. The :class:`.NullType` can be used within SQL expression invocation without issue, it just has no behavior either at the expression construction level or at the bind-parameter/result processing level. :class:`.NullType` will result in a :exc:`.CompileError` if the compiler is asked to render the type itself, such as if it is used in a :func:`.cast` operation or within a schema creation operation such as that invoked by :meth:`_schema.MetaData.create_all` or the :class:`.CreateTable` construct. """ __visit_name__ = "null" _isnull = True def literal_processor(self, dialect): return None class Comparator(TypeEngine.Comparator[_T]): __slots__ = () def _adapt_expression( self, op: OperatorType, other_comparator: TypeEngine.Comparator[Any], ) -> Tuple[OperatorType, TypeEngine[Any]]: if isinstance( other_comparator, NullType.Comparator ) or not operators.is_commutative(op): return op, self.expr.type else: return other_comparator._adapt_expression(op, self) comparator_factory = Comparator class TableValueType(HasCacheKey, TypeEngine[Any]): """Refers to a table value type.""" _is_table_value = True _traverse_internals = [ ("_elements", InternalTraversal.dp_clauseelement_list), ] def __init__(self, *elements: Union[str, _ColumnExpressionArgument[Any]]): self._elements = [ coercions.expect(roles.StrAsPlainColumnRole, elem) for elem in elements ] class MatchType(Boolean): """Refers to the return type of the MATCH operator. As the :meth:`.ColumnOperators.match` is probably the most open-ended operator in generic SQLAlchemy Core, we can't assume the return type at SQL evaluation time, as MySQL returns a floating point, not a boolean, and other backends might do something different. So this type acts as a placeholder, currently subclassing :class:`.Boolean`. The type allows dialects to inject result-processing functionality if needed, and on MySQL will return floating-point values. """ _UUID_RETURN = TypeVar("_UUID_RETURN", str, _python_UUID) class Uuid(Emulated, TypeEngine[_UUID_RETURN]): """Represent a database agnostic UUID datatype. For backends that have no "native" UUID datatype, the value will make use of ``CHAR(32)`` and store the UUID as a 32-character alphanumeric hex string. For backends which are known to support ``UUID`` directly or a similar uuid-storing datatype such as SQL Server's ``UNIQUEIDENTIFIER``, a "native" mode enabled by default allows these types will be used on those backends. In its default mode of use, the :class:`_sqltypes.Uuid` datatype expects **Python uuid objects**, from the Python `uuid <https://docs.python.org/3/library/uuid.html>`_ module:: import uuid from sqlalchemy import Uuid from sqlalchemy import Table, Column, MetaData, String metadata_obj = MetaData() t = Table( "t", metadata_obj, Column("uuid_data", Uuid, primary_key=True), Column("other_data", String), ) with engine.begin() as conn: conn.execute( t.insert(), {"uuid_data": uuid.uuid4(), "other_data": "some data"} ) To have the :class:`_sqltypes.Uuid` datatype work with string-based Uuids (e.g. 32 character hexadecimal strings), pass the :paramref:`_sqltypes.Uuid.as_uuid` parameter with the value ``False``. .. versionadded:: 2.0 .. seealso:: :class:`_sqltypes.UUID` - represents exactly the ``UUID`` datatype without any backend-agnostic behaviors. """ # noqa: E501 __visit_name__ = "uuid" collation: Optional[str] = None @overload def __init__( self: Uuid[_python_UUID], as_uuid: Literal[True] = ..., native_uuid: bool = ..., ): ... @overload def __init__( self: Uuid[str], as_uuid: Literal[False] = ..., native_uuid: bool = ..., ): ... def __init__(self, as_uuid: bool = True, native_uuid: bool = True): """Construct a :class:`_sqltypes.Uuid` type. :param as_uuid=True: if True, values will be interpreted as Python uuid objects, converting to/from string via the DBAPI. .. versionchanged: 2.0 ``as_uuid`` now defaults to ``True``. :param native_uuid=True: if True, backends that support either the ``UUID`` datatype directly, or a UUID-storing value (such as SQL Server's ``UNIQUEIDENTIFIER`` will be used by those backends. If False, a ``CHAR(32)`` datatype will be used for all backends regardless of native support. """ self.as_uuid = as_uuid self.native_uuid = native_uuid @property def python_type(self): return _python_UUID if self.as_uuid else str @property def native(self): return self.native_uuid def coerce_compared_value(self, op, value): """See :meth:`.TypeEngine.coerce_compared_value` for a description.""" if isinstance(value, str): return self else: return super().coerce_compared_value(op, value) def bind_processor(self, dialect): character_based_uuid = ( not dialect.supports_native_uuid or not self.native_uuid ) if character_based_uuid: if self.as_uuid: def process(value): if value is not None: value = value.hex return value return process else: def process(value): if value is not None: value = value.replace("-", "") return value return process else: return None def result_processor(self, dialect, coltype): character_based_uuid = ( not dialect.supports_native_uuid or not self.native_uuid ) if character_based_uuid: if self.as_uuid: def process(value): if value is not None: value = _python_UUID(value) return value return process else: def process(value): if value is not None: value = str(_python_UUID(value)) return value return process else: if not self.as_uuid: def process(value): if value is not None: value = str(value) return value return process else: return None def literal_processor(self, dialect): character_based_uuid = ( not dialect.supports_native_uuid or not self.native_uuid ) if not self.as_uuid: def process(value): return f"""'{value.replace("-", "").replace("'", "''")}'""" return process else: if character_based_uuid: def process(value): return f"""'{value.hex}'""" return process else: def process(value): return f"""'{str(value).replace("'", "''")}'""" return process class UUID(Uuid[_UUID_RETURN], type_api.NativeForEmulated): """Represent the SQL UUID type. This is the SQL-native form of the :class:`_types.Uuid` database agnostic datatype, and is backwards compatible with the previous PostgreSQL-only version of ``UUID``. The :class:`_sqltypes.UUID` datatype only works on databases that have a SQL datatype named ``UUID``. It will not function for backends which don't have this exact-named type, including SQL Server. For backend-agnostic UUID values with native support, including for SQL Server's ``UNIQUEIDENTIFIER`` datatype, use the :class:`_sqltypes.Uuid` datatype. .. versionadded:: 2.0 .. seealso:: :class:`_sqltypes.Uuid` """ __visit_name__ = "UUID" @overload def __init__(self: UUID[_python_UUID], as_uuid: Literal[True] = ...): ... @overload def __init__(self: UUID[str], as_uuid: Literal[False] = ...): ... def __init__(self, as_uuid: bool = True): """Construct a :class:`_sqltypes.UUID` type. :param as_uuid=True: if True, values will be interpreted as Python uuid objects, converting to/from string via the DBAPI. .. versionchanged: 2.0 ``as_uuid`` now defaults to ``True``. """ self.as_uuid = as_uuid self.native_uuid = True @classmethod def adapt_emulated_to_native(cls, impl, **kw): kw.setdefault("as_uuid", impl.as_uuid) return cls(**kw) NULLTYPE = NullType() BOOLEANTYPE = Boolean() STRINGTYPE = String() INTEGERTYPE = Integer() NUMERICTYPE: Numeric[decimal.Decimal] = Numeric() MATCHTYPE = MatchType() TABLEVALUE = TableValueType() DATETIME_TIMEZONE = DateTime(timezone=True) TIME_TIMEZONE = Time(timezone=True) _BIGINTEGER = BigInteger() _DATETIME = DateTime() _TIME = Time() _STRING = String() _UNICODE = Unicode() _type_map: Dict[Type[Any], TypeEngine[Any]] = { int: Integer(), float: Float(), bool: BOOLEANTYPE, _python_UUID: Uuid(), decimal.Decimal: Numeric(), dt.date: Date(), dt.datetime: _DATETIME, dt.time: _TIME, dt.timedelta: Interval(), type(None): NULLTYPE, bytes: LargeBinary(), str: _STRING, enum.Enum: Enum(enum.Enum), Literal: Enum(enum.Enum), # type: ignore[dict-item] } _type_map_get = _type_map.get def _resolve_value_to_type(value: Any) -> TypeEngine[Any]: _result_type = _type_map_get(type(value), False) if _result_type is False: _result_type = getattr(value, "__sa_type_engine__", False) if _result_type is False: # use inspect() to detect SQLAlchemy built-in # objects. insp = inspection.inspect(value, False) if ( insp is not None and # foil mock.Mock() and other impostors by ensuring # the inspection target itself self-inspects insp.__class__ in inspection._registrars ): raise exc.ArgumentError( "Object %r is not legal as a SQL literal value" % (value,) ) return NULLTYPE else: return _result_type._resolve_for_literal( # type: ignore [union-attr] value ) # back-assign to type_api type_api.BOOLEANTYPE = BOOLEANTYPE type_api.STRINGTYPE = STRINGTYPE type_api.INTEGERTYPE = INTEGERTYPE type_api.NULLTYPE = NULLTYPE type_api.NUMERICTYPE = NUMERICTYPE type_api.MATCHTYPE = MATCHTYPE type_api.INDEXABLE = INDEXABLE = Indexable type_api.TABLEVALUE = TABLEVALUE type_api._resolve_value_to_type = _resolve_value_to_type
/home/servlmvm/.././.././opt/hc_python/lib64/python3.12/site-packages/sqlalchemy/sql/sqltypes.py